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In the present Rapid Communication we calculate the density matrix of heat conduction based on the field
theory of nonequilibrium thermodynamics, which was worked out in the last 10 years. Applying these results
we can discuss the existence of the maximal temperature and a possible upper limit for its value. We point out,
proposing relevant physical assumptions, that this temperature could be the so-called Planck temperature[J. A.
S. Lima and M. Trodden, Phys. Rev. D53, 4280(1996)].
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I. INTRODUCTION

The question regarding the maximal temperature is not
new at all. Moreover, if a maximal temperature exists, what
happens close to that? Our aim is to find a reasonable answer
to this question. We would like to emphasize that mainly the
mathematics will lead our examination via relevant physical
assumptions. The mathematical calculus of Hamiltonian for-
malism is the starting point, which has been developed and
applied to describe nondissipative physical processes. Previ-
ously, we have shown that this mathematical method can be
modified for dissipative processes, e.g., heat conduction.
Thus, we start from the description of thermal field; we apply
the methods of field theory, i.e., Hamilton’s principle, La-
grangian of Fourier equation; we write the Hamilton-Jacobi
equation; and we calculate the action. The propagator and the
density matrix of the thermal process can be simply obtained
by the usual method. These steps will bring us closer to
formulating the mathematical restrictions that contain the
limits of extremal behaviors of this physical system. At this
point, making some assumptions about the characteristic
length, we can handle this “thermal field” as a quantum field
with massive thermal particles. We may call these “hotons.”

There are several papers in the literature that deal with the
existence of thermal particles with mass from different view-
points. One of these is Veinik’s hypothesis of elementary
thermal quanta[1,2], which observed in terms of the entropy
of a single photon of the blackbody radiation. Another direc-
tion in the research is to apply complex valued field variables
in the Lagrangian theory of nonequilibrium processes. An-
thony et al. [3–6] introduced the concept of the thermal ex-
citations or thermal “thermion” field, in which quasiparticles
are associated with the matter field.

II. PRELIMINARIES

A physical process can be described by the Lagrangian,
i.e., all of the information of evolution of a physical process

are involved in this scalar function. The time integration of
the Lagrangian yields the classical actionSfb,ag,

Sfb,ag =E
ta

tb

Lsq̇,q,tddt, s1d

wherea belongs to the initial state at timeta, and b is the
final one attb. The classical LagrangianL of the physical
problem may depend onq and its time derivatives(here just
q̇) and the timet. Hamilton’s principle states that the varia-
tion of action is zero for the real physical processesdS=0.
The field equation of Fourier heat conduction is

]T

]t
−

l

cv
DT = 0, s2d

whereT is the temperature,l is the heat conductivity, andcv
is the specific heat capacity;D denotes the Laplace operator.
We introduce a scalar, differentiable(potential) field w [7],

T = −
]w

]t
−

l

cv
Dw, s3d

which is connected to the measurable fieldT in this equation.
The Lagrange density function of the physical problem ex-
pressed byw is

L =
1

2
S ]w

]t
D2

+
1

2

l2

cv
2 sDwd2, s4d

from which we can obtain the field equation ofw as the
Euler-Lagrange equation. We can choose this quadratic La-
grangian, because in the complicated cases we can find the
transformation of the variables by which we obtain this La-
grangian. On the other hand, the additional terms appearing
in the Lagrangian make more difficult the mathematical cal-
culations from the viewpoint of the construction of the ca-
nonical theory and the quantization. If we substitute the
equation of definition ofw, we receive the field equation of
Fourier heat conduction[7]. We can writew in a Fourier
series[8],
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w = o
k.0

Î2

V
sCk coskx+ Sk sinkxd, s5d

whereCk andSk are the function of time, and these will be
the generalized coordinates of the system. The Lagrangian of
the field can be calculated if we substitute the Fourier series
of w into Eq.(4), and then we integrate over the volume. We
get the Lagrangian of the space, which depends on only the
generalized coordinates and the first-order derivatives of
these with respect to time,

L =
1

2 o
k.0

FsĊk
2 + Ṡk

2d +
l2

cv
2 k4sCk

2 + Sk
2dG . s6d

The canonically conjugated quantities are the momenta

PK
sCd=Ċk and PK

sSd=Ṡk, by which we can express the Hamil-
tonian of the system[8]

H = o
k
S1

2
Pk

sCd2 −
1

2

l2

cv
2 k4Ck

2D + o
k
S1

2
Pk

sSd2 −
1

2

l2

cv
2 k4Sk

2D .

s7d

III. THE ACTION, THE KERNEL,
AND THE DENSITY MATRIX

The Hamilton-Jacobi equation can be written, in general,

]S

]t
+ HSq1, . . . ,qf,

]S

]q1
, . . . ,

]S

]qf
D = 0, s8d

whereqi is a generalized coordinate, and]S/]qi is a momen-
tum. In our special case we can express the Hamilton-Jacobi
equation of heat conduction by the Fourier coefficients as
generalized coordinates,

]S

]t
+ o

k
F1

2
S ]S

]Ck
D2

−
1

2

l2

cv
2 k4Ck

2G
+ o

k
F1

2
S ]S

]Sk
D2

−
1

2

l2

cv
2 k4Sk

2G = 0. s9d

The system is developing from the statea at time ta to the
stateb at timetb, and we supposetb. ta. Solving this partial
differential equation, and taking into account the initial and
final states, the calculated action for this process is

Sfb,ag = o
k.0

sl/cvdk2

2 sinhfsl/cvdk2stb − tadg

3HsCka
2 + Ckb

2 + Ska
2 + Skb

2 dcoshF l

cv
k2stb − tadG

− 2CkaCkb − 2SkaSkbJ , s10d

which is the solution of the Hamilton-Jacobi equation. In
general, the kernel of a quadratic action can be written[9] (or
can be calculated by the path integral method[10–12])

Ksb,ad = p
k.0

sl/cvdk2

2pih * sinhfsl/cvdk2tg

3 expH sl/cvdk2i

2h * sinhfsl/cvdk2tg

3FsCka
2 + Ckb

2 + Ska
2 + Skb

2 dcoshS l

cv
k2tD

− 2CkaCkb − 2SkaSkbGJ , s11d

where we denotet= tb− ta. This propagator[13] is called a
WKB propagator[9], and it is exact for those Lagrangians
that contain quadratic terms, in general. It can be simply
proved that this propagator is a solution of the following
generalized Schrödinger-type equation:

−
h*

i

]K

]t
= − o

k

h*2

2

]2K

]Ck
2 − o

k

h*2

2

]2K

]Sk
2 − o

k

l2k4

2cv
2 sCk

2 + Sk
2dK,

s12d

which shows the correctness of the propagator from another
side. Here,h* denotes the unit of action given by Eq.(10)
with its measureh* =2" /kB, where" is the Planck constant
per 2p, andkB is the Boltzmann constant. Now, we are in a
position to give the density matrix of heat conduction. This
can be simply achieved by going over to the propagator with
imaginary time, i.e., by the substitution

t → 1

i

h*

8pT
, s13d

similar to the literature[9], t→" / i4pkBT. Thus, we may
obtain the density matrix of heat conduction

rfb,a;1/skBTdg = p
k.0

sl/cvdk2

2p" sinS sl/cvdk2"

4pkBT
D

3exp_−
sl/cvdk2

2" sinS sl/cvdk2"

4pkBT
D

3FsCka
2 + Ckb

2 + Ska
2 + Skb

2 dcosS sl/cvdk2"

4pkBT
D

− 2CkaCkb − 2SkaSkbG+ , s14d

which is expressed by the generalized coordinates. The ap-
plicability of the Feynman path integral method shows and
carries the construction of wave function that is related to the
propagatorK. This propagator is a solution of a Schrödinger-
type equation. These facts may indicate the possibility of
particle-wave duality[14–16] in the present case.

IV. ON THE MAXIMAL TEMPERATURE

The density matrix is expressed by the Fourier coeffi-
cients as generalized coordinates, so it is not easy to interpret
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the meaning of it for the first view. We exploit the property
of the density matrix, namely, this must be positive for all
wave numbersk. Thus, we should restrict our examination to
the coefficients,

sl/cvdk2

2p" sinS sl/cvdk2"

4pkBT
D .

This expression is always positive if the sine is positive in
the denominator. In this way, the following nonequality
holds:

0 ,
sl/cvdk2"

4pkBT
=

Dk2"

4pkBT
, p, s15d

by which the expected property of the density matrix is car-
ried out. Here, we denoted the heat diffusivityD=l /cv. We
introduce the thermal wavelengthlT instead of the wave
numberk=2p /lT, and we obtain

lT .Î4pD"

kBT
. s16d

What might be the minimal wavelength? What may be the
physically acceptable minimum of that length where the
above description of heat transfer is valid? It is not easy to
answer and probably the usual heat conduction and the usual
meaning of temperature do not exist at all. However, we may
assume that there is a kind of energy transfer that is very
similar to a heat transfer(a slow, nonrelativistic, linear pro-
cess) and this can be described by a Fourier-like equation.
We use the diffusivityD as a parameter that includes all of
the properties of system, and it is not necessary to be ex-
pressed as the function ofl and cv. We can calculate the
maximal temperature from the above equation and we get by
the minimal lengthLs=lT,mind

Tmax=
D"

kBL2 . s17d

The maximal temperature depends on universal coefficients
h andkB, the measurementL, and the diffusivityD. We cal-
culate the diffusivity and then we can obtain the upper limit
of temperature. The Feynman path integral quantization
handles the interacting quanta as wave packets with the en-
ergy D"k2 [see Eq.(14)]. Let us write this thermal process
with particles that are unknown at this moment. If we accept
their possible existence, we can write the de Broglie wave-
lengthlD of these particles with their massm as

lD =Î4p2"2

mkBT
. s18d

We connected the same process from different viewpoints.
We obtained the thermal wavelengthlT from our density
matrix [Eq. (14)] and we write the de Broglie wavelengthlD

from the statistical physics. It seems to be obvious that these
wavelengths are equal, thus, we are allowed to writelT
=lD. We express the diffusivity

D =
4p2"

m
. s19d

Now, we can handle the thermal particle(hoton) as a de
Broglie particle by the equation

D"k2 = D"
4p2

L2 = mc2, s20d

which shows that particle with massm can appear and can
carry the thermal property of heat transfer;c is the speed of
light. Substituting Eqs.(19) and(20) into Eq.(17) we obtain
the maximal temperature

Tmax=
c"

kBL
. s21d

One can choose a minimal value of this length for the Planck
length,

Lp =Î"g

c3 , s22d

g is the gravitational constant, by which the maximal tem-
perature is

Tmax=Îc5"

kB
2g

. s23d

This is exactly the so-called Planck temperature[17]. It is
known from the cosmology, and it is considered as an abso-
lute limit for the temperature which is about 1.431032 K.

V. SUMMARY

We can conclude that the maximal temperature—which
was calculated from the classical thermodynamic viewpoint
as a starting point—is exactly the same as the Planck tem-
perature, which was introduced in the cosmology. The pos-
sibility of this calculation was rooted in the existence of
Hamilton-Lagrange formalism of the classical dissipative
processes. This formulation allowed us to exploit the Feyn-
man method and we could calculate the density matrix of a
thermal process. This allowed us to assume the particle be-
havior, and in this sense we made some relevant physical
assumptions to give the value of the possible maximal tem-
perature, i.e., there is no higher physically meaningful tem-
perature.
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