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In the present Rapid Communication we calculate the density matrix of heat conduction based on the field
theory of nonequilibrium thermodynamics, which was worked out in the last 10 years. Applying these results
we can discuss the existence of the maximal temperature and a possible upper limit for its value. We point out,
proposing relevant physical assumptions, that this temperature could be the so-called Planck tenjpefature
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I. INTRODUCTION are involved in this scalar function. The time integration of

The question regarding the maximal temperature is no%he Lagrangian yields the classical acti€jib,al,
new at all. Moreover, if a maximal temperature exists, what t
happens close to that? Our aim is to find a reasonable answer gb,al= J L(g,q,t)dt, (1)
to this question. We would like to emphasize that mainly the ts
mathematics will lead our examination via relevant physical
assumptions. The mathematical calculus of Hamiltonian foryherea belongs to the initial state at timg, andb is the
malism is the starting point, which has been developed anflnal one att,. The classical Lagrangiah of the physical
applied to describe nondissipative physical processes. Presiroblem may depend omand its time derivativeghere just
ously, we have shown that this mathematical method can bg) and the timet. Hamilton’s principle states that the varia-
modified for dissipative processes, e.g., heat conductiortion of action is zero for the real physical process&s 0.
Thus, we start from the description of thermal field; we applyThe field equation of Fourier heat conduction is
the methods of field theory, i.e., Hamilton’s principle, La-
grangian of Fourier equation; we write the Hamilton-Jacobi aT
equation; and we calculate the action. The propagator and the — - —AT=0, (2
density matrix of the thermal process can be simply obtained a G
by the usual method. These steps will bring us closer to

formulating the mathematical restrictions that contain theWhereT is the temperature is the heat conductivity, ant}

limits of extremal behaviors of this physical system. At this is the specific heat capacit denotes the Laplace operator.

point, making some assumptions about the characteristit€ introduce a scalar, differentiaipotentia) field ¢ [7],

length, we can handle this “thermal field” as a quantum field

with massive thermal particles. We may call these “hotons.” T=- Ie _ AAgo (3)
There are several papers in the literature that deal with the at ¢,

existence of thermal particles with mass from different view-

points. One of these is Veinik's hypothesis of elementarywhich is connected to the measurable fi€loh this equation.

thermal quant§l,2], which observed in terms of the entropy The Lagrange density function of the physical problem ex-

of a single photon of the blackbody radiation. Another direc-pressed byp is

tion in the research is to apply complex valued field variables

in the Lagrangian theory of nonequilibrium processes. An- 1(dp\? 1N? 5
thony et al. [3—6] introduced the concept of the thermal ex- =S\t Eg(AtP) : (4)
U

citations or thermal “thermion” field, in which quasiparticles

are associated with the matter field. from which we can obtain the field equation ¢f as the

Euler-Lagrange equation. We can choose this quadratic La-
Il. PRELIMINARIES grangian, because in the complicated cases we can find the
. . . transformation of the variables by which we obtain this La-
_ A physical process can be described by the Lagrangiary angian. On the other hand, the additional terms appearing
i.e., all of the information of evolution of a physical process;, he Lagrangian make more difficult the mathematical cal-
culations from the viewpoint of the construction of the ca-
nonical theory and the quantization. If we substitute the
*Corresponding author. Email address: markus@phy.bme.hiequation of definition ofp, we receive the field equation of
mafer@mailbox.hu Fourier heat conductiofi7]. We can writee in a Fourier
"Email address: gambar@Iudens.elte.hu; gakat@mailbox.hu  series[8],
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(Mc,)k?
0=2 \/7((:k coskx+ Scsinkx), ® Kb = L o e
whereC, and S, are the function of time, and these will be (M, K’
k : X ex

the generalized coordinates of the system. The Lagrangian of 2h* sinh[(\/c,)k?t]

the field can be calculated if we substitute the Fourier series

of ¢ into Eq.(4), and then we integrate over the volume. We [ ot St SEb)COS"( kzt)

get the Lagrangian of the space, which depends on only the

generalized coordinates and the first-order derivatives of

these with respect to time, = 2CCp ~ ZSKaSKb] } , (11
\? 2 where we denoté=t,—t,. This propagatof13] is called a

2k>0 [(Ck+§) ¥ k4(ck+§) ' © WKB propagator[9], and it is exact for those Lagrangians

that contain quadratic terms, in general. It can be simply
The canonically conjugated quantities are the momentproved that this propagator is a solution of the following
PIO=C, and PP =S, by which we can express the Hamil- generalized Schrodinger-type equation:
tonian of the systeni8] h* oK h'2 2K s h'2 2K A4
1 | f?t k 7(9C2 k 73_ k ?
e 2( p<C>2--—k4c2) s <§P<k3>2———k43§> “
k

(Ci+ SHK,

(12)

(7)  which shows the correctness of the propagator from another
side. Here h* denotes the unit of action given by E¢LO)
with its measurén* =27 /kg, wheret: is the Planck constant
. THE ACTION, THE KERNEL, per 2, andkg is the Boltzmann constant. Now, we are in a
AND THE DENSITY MATRIX position to give the density matrix of heat conduction. This
can be simply achieved by going over to the propagator with
imaginary time, i.e., by the substitution

3 e Yfy 3y ey — Y, — T,
a A\ ooy’ on i 8T

whereg; is a generalized coordinate, a8/ Jqg; is a momen-  similar to the literature[9], t—#/idwkgT. Thus, we may
tum. In our special case we can express the Hamilton-Jacobbtain the density matrix of heat conduction
equation of heat conduction by the Fourier coefficients as

The Hamilton-Jacobi equation can be written, in general

. . (Mc,)k?
generalized coordinates, plb,a;1/(ksT)]= 11 GG
k>0 . A Cy
IS 1/ 45 2 1)\2 ) 2mh SIH( —47T|( T
— 4 E _ — — __2k4Ck B
at 2\ dCy 2¢c; (MG, K2
xexp - .
1/ 6S\2 12 (()\/c )k2ﬁ>
+ -|—=] -==Ks|=0. 9 2% sin| ———
% {2(@) 2¢ SE] ®) SN\ "2 kgT
The s . . . (NMc,)kh k%A
ystem is developing from the sta@eat timet, to the (Ck + Ckb+ i §0
stateb at timet,,, and we supposg >t,. Solving this partial é 4akgT
differential equation, and taking into account the initial and
final states, the calculated action for this process is -2CCyp— ZS(aSKb} , (14

2
Sb.a]= E (Mcyk

2
k=0 2 SiNH(\C, Kty ~ ta)] which is expressed by the generalized coordinates. The ap-

N plicability of the Feynman path integral method shows and
X1 (C2,+ C2+ S, + Si)cosh —KA(t, — ty) carries the construction of wave function that is related to the
C propagatoK. This propagator is a solution of a Schrodinger-

type equation. These facts may indicate the possibility of
= 2CaCrb ™ 2SS ( » (10 particle-wave dualityf14-1§ in the present case.
which is the solution of the Hamilton-Jacobi equation. In V. ON THE MAXIMAL TEMPERATURE
general, the kernel of a quadratic action can be writ@ror The density matrix is expressed by the Fourier coeffi-
can be calculated by the path integral mettiba—12) cients as generalized coordinates, so it is not easy to interpret
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the meaning of it for the first view. We exploit the property from the statistical physics. It seems to be obvious that these
of the density matrix, namely, this must be positive for allwavelengths are equal, thus, we are allowed to wkite
wave numberg. Thus, we should restrict our examination to =\p. We express the diffusivity

the coefficients,

b 47 19
2 =—.
(Mc,)k m
A
27h sin(w> Now, we can handle the thermal partigleoton as a de

4mkgT Broglie particle by the equation
This expression is always positive if the sine is positive in A2
the denominator. In this way, the following nonequality Dfik?=Dfi— =mdc, (20)
holds: L

(Me)keh DKk which shows that particle with masgs can appear and can
v = <, (15) carry the thermal property of heat transferis the speed of
4mkgT  AmkgT light. Substituting Egs(19) and(20) into Eq.(17) we obtain
by which the expected property of the density matrix is carhe maximal temperature
ried out. Here, we denoted the heat diffusivily=\/c,. We ch
introduce the thermal wavelengthy; instead of the wave TmaX:k—. (21
numberk=27/\1, and we obtain sl
\/W One can choose a minimal value of this length for the Planck
> . 16)  length,
T kT (16)
[h

What might be the minimal wavelength? What may be the Lp= C—y (22

physically acceptable minimum of that length where the

above description of heat transfer is valid? It is not easy toy js the gravitational constant, by which the maximal tem-

answer and probably the usual heat conduction and the usugérature is

meaning of temperature do not exist at all. However, we may

assume that there is a kind of energy transfer that is very T C5_ﬁ

similar to a heat transfea slow, nonrelativistic, linear pro- max— \ 2,
. . LT . BY

ces$ and this can be described by a Fourier-like equation. _

We use the diffusivityD as a parameter that includes all of This is exactly the so-called Planck temperat[ttg]. It is

the properties of system, and it is not necessary to be exnown from the cosmology, and it is considered as an abso-

pressed as the function of and c,. We can calculate the lute limit for the temperature which is about X4.0** K.

maximal temperature from the above equation and we get by

(23

the minimal lengthL(=\1 i) V. SUMMARY
D% We can conclude that the maximal temperature—which
Tnax= PRER (17)  was calculated from the classical thermodynamic viewpoint
B

as a starting point—is exactly the same as the Planck tem-
The maximal temperature depends on universal coefficientgerature, which was introduced in the cosmology. The pos-
h andkg, the measuremeitt, and the diffusivityD. We cal-  sibility of this calculation was rooted in the existence of
culate the diffusivity and then we can obtain the upper limitHamilton-Lagrange formalism of the classical dissipative
of temperature. The Feynman path integral quantizatiogprocesses. This formulation allowed us to exploit the Feyn-
handles the interacting quanta as wave packets with the eman method and we could calculate the density matrix of a
ergy DAik? [see Eq.14)]. Let us write this thermal process thermal process. This allowed us to assume the particle be-
with particles that are unknown at this moment. If we accephavior, and in this sense we made some relevant physical
their possible existence, we can write the de Broglie waveassumptions to give the value of the possible maximal tem-

length \p of these particles with their mass as perature, i.e., there is no higher physically meaningful tem-
perature.
- |4m*h? 19
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